sábado, 4 de octubre de 2008

Los Primos de Mersenne

En este post no voy a hablar claro está de los hijos de los tíos del filósofo Mersenne (chiste malo, ya lo sé, lo siento mucho XD) sino de los números primos que llevan su nombre.

Se le llama primo de Mersenne a un número primo de la forma 2^n - 1.

Muchos autores antiguos pensaron que los números de la forma 2^n - 1 eran primos para todos los n primos, pero en 1536 Hudalricus Regius demostró que 2^11 - 1 = 2047 no era primo (es igual a 23x89).
Posteriormente se verificó que 2^n - 1 era primo para n = 17, 19 y 31, y que no era primo para n = 23, 29 y 37.

A fecha de hoy, sólo se conocen 46 números primos de Mersenne, siendo el mayor de ellos 2^43.112.609−1, un número de casi trece millones de cifras. El número primo más grande que se conocía en una fecha dada casi siempre ha sido un número primo de Mersenne: desde que empezó la era electrónica en 1951 siempre ha sido así salvo en 1951 y entre 1989 y 1992.

No se sabe si existen infinitos primos de Mersenne.

En vuestra wikipedia más cercana, teneis los 46 números primos de Mersenne conocidos hasta la fecha (en los últimos por motivos de espacio sólo aparecen las primeras y las últimas cifras):

http://es.wikipedia.org/wiki/Número_primo_de_Mersenne


Y en este enlace podeis encontrar el primo de Mersenne más grande conocido hasta la fecha. Una cosa: si no teneis un ordenador suficientemente potente ni intenteis abrirlo. El número es gigantesco y os va a tardar un rato largo en cargar. Eso sí, si lo abrís probablemente veais el número más monstruosamente grande que hayais visto jamás.

Último primo de Mersenne conocido

No hay comentarios: