sábado, 21 de abril de 2007

Con todos ustedes... su alteza real Carl Friedrich Gauss



Carl Friedrich Gauss (1777-1855) matemático alemán, fue un niño prodigio, y continuó siendo prodigio toda su vida hasta el extremo que se le ha llamado el Príncipe de los Matemáticos, si bien su linaje no fue nada aristocrático, pues nació en una miserable cabaña y sus padres eran pobres. Sus contribuciones a la matemática, la física matemática y otras ramas aplicadas de la ciencia, como la Astronomía, fueron de una importancia extraordinaria. Nunca publicó un trabajo hasta asegurarse de que estaba perfectamente elaborado, por lo cual no hay forma de saber cómo obtenía sus resultados (llegó a decir "cuando se finaliza un noble edificio no deben quedar visibles los andamios", pero, continuando con su metáfora, Gauss no solamente retiró los andamios sino que destruyó los planos. Jacobi dijo: "sus demostraciones son rígidas, heladas... lo primero que hay que hacer es descongelarlas". Abel observó "Es como el zorro, que borra con la cola sus huellas de la arena").

Fue muy precoz. Antes de cumplir tres años corrigió a su padre en la cuenta de la paga a los obreros, sin que nadie le hubiera enseñado aritmética. A los 10 años el maestro propuso en clase el problema de sumar 1+2+...+100. Apenas había terminado de enunciarlo, cuando Gauss puso su pizarra en la mesa del profesor. Al cabo de una hora sus compañeros terminaron el tedioso cálculo. Sus pizarras estaban repletas de sumas, mientras que en la de Gauss sólo había un número. Era la única respuesta correcta. A Gauss le encantaba, en su vejez, contar esta anécdota. El maestro le compró con su propio dinero un libro de aritmética y se lo regaló. El libro contenía una demostración del teorema del binomio poco rigurosa; a Gauss no le gusto, y construyó otra mejor. A los 19 años había demostrado importantes teoremas de teoría de números, que con anterioridad Euler y Legendre habían intentado demostrar sin éxito. Desde Euclides se conocían construcciones geométricas con sólo regla y compás para los polígonos regulares de 3, 4, 5, y 15 lados y todos los que se deducen de ellos por bisección, pero ninguno más. En 2.000 años nadie había avanzado nada en este problema. En marzo de 1796, con 18 años, encontró una construcción para el polígono de 17 lados y caracterizó exactamente los polígonos que pueden construirse con regla y compás: su número de lados ha de estar compuesto de potencias de 2 y de primos de Fermat con n primo. Esto fue lo que lo decidió a hacer la carrera de matemáticas.

Según cuenta él mismo, a los 20 años estaba tan sobrecargado de ideas matemáticas que no tenía tiempo para escribirlas. En julio de 1796 demostró que todo entero positivo es suma de tres números triangulares. El primero en demostrar que un polinomio tiene como máximo tantas raíces distintas como indica su grado fue Gauss. Lo curioso es que esa demostración la hizo con sólo veintiún años, en su tesis doctoral. En 1801, con 24 años, publicó sus Disquisitiones Arithmeticae, donde, entre otras, inventó la aritmética modular porque la necesitaba para profundos teoremas. Fue el primero en usar ampliamente los números complejos y en expresarlos en su forma binómica junto con sus leyes. En su tesis doctoral (1799), demostró el Teorema Fundamental del Álgebra por ser uno de los más importantes pilares sobre el que se sustenta todo el álgebra. Fue el primero en emplear geometrías no euclídeas y en darles tal denominación. Descubrió el teorema de Cauchy, fundamento del análisis de variable compleja. Descubrió la distribución normal (de Gauss), el método de mínimos cuadrados. Su enorme fama aumentó aún más depués de su muerte, al descubrirse, inéditos, una gran cantidad de importantes resultados que él no había querido publicar.

Fuente: http://etsiit.ugr.es/profesores/jmaroza/anecdotario/anecdotario.htm

No hay comentarios: